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What do we know about adversarial examples?

m Some imperceptible noise added on the input can alter the output
prediction!

racer i running shoe

11, Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing adversarial examples”. [n: ArXiv
preprints arXiv:1412.6572 (2014).
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Characterizing the vulnerability of deep learning models

How to measure the vulnerability of a deep learning model?
m Worst case perturbation = adversarial training?

m Density® / model uncertainty / topological dimension* = adversarial
detection

2A. Sinha, H. Namkoong, and J. Duchi. “Certifying some distributional robustness with principled adversarial
training”. In: ArXiv preprints arXiv:1710.10571 (2017).

3J. Metzen et al. “On detecting adversarial perturbations”. In: ArXiv preprints arXiv:1702.04267 (2017).

4X. Ma et al. “Characterizing adversarial subspaces using local intrinsic dimensionality”. In: ArXiv preprints
arXiv:1801.02613 (2018).
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The Fisher information metric approach

Pullback metric g;;

N I G.Jm=n"G,

Fisher information metric yfj
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Objective function

For adversarial attacks, the goal is to find a subtle perturbation n for a
given input, such that the output prediction varies from the the correct to
the wrong output.

maxn G st 0] = e

m The optimal solution for 77 is the greatest eigenvector of matrix G*

m But how do we define the metric tensor g*?
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FIM of the input samples

Data distribution

X ~q(x)

Model distribution

Empirical distribution
Y ~ p(ylx)

=p-E
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Fisher information

Definition (Fisher information)

Let p(x|0) be a probability density function of random variable X
conditioned on parameter 6. The Fisher information matrix of 6, denoted
as GY, is defined as the variance of the expectation over the derivative of
log-likelihood with respect to 0:

G?j — Emw[(% logp(xw))(aiaj log p((6))"]

Many theoretical benefits in®

5S. Amari and H. Nagaoka. Methods of Information Geometry. Providence, RI: American Mathematical
Society, 2007.
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FIM of the input samples

For adversarial attacks, the input x is the only changeable variable. With
some exchange of variables we obtain

G = Eyal - oxplyle) (- oz p(yfe)”

What is p(y|x) here?
m True model distribution p(y|x) (like Gaussian or sth)
m Empirical distribution 7(y|f(x)) (the output of the model)
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FIM of the input samples

How to compute the matrix G*7?
m Using the Jacobian J; of the network f: X — Z.5

G = JTEy [ (yl2) (e (y12)) )y

0z 0z
= JjG7J;
m Given 7 as the adversarial perturbation, a general approach is to
compute the Hessian of the KL divergence.”
2
G} =Ey|j(a) [MDKL(Z?(Z/\CU)HP(Z/\CU +m))]

6Hyeyoung Park, S-1 Amari, and Kenji Fukumizu. “Adaptive natural gradient learning algorithms for various
stochastic models”. In: Neural Networks 13.7 (2000), pp. 755-764.

"Takeru Miyato et al. “Virtual adversarial training: a regularization method for supervised and semi-supervised
learning”. In: IEEE transactions on pattern analysis and machine intelligence (2018).
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FIM of the input samples

m How can we calculate FIM more efficiently?

m We use empirical distribution to compute the FIM with its original
form®

G = Byl o (01 () - log (1 ()"

_Zrk YRI og )))(ilogm(ylf( D))

8 James Martens. “New insights and perspectives on the natural gradient method”. In: arXiv preprint
arXiv:1412.1193 (2014).
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Why empirical distribution?

What are the advantages for using the empirical distribution instead of
true model distribution?

m Easy to compute, provided that one is already calculating the gradient

n

G™ = 3 rl (@) [ log iy (@) e log iyl ()]

=1

m More optimization tricks to accelerate the computing process

17 G = By (0" (- logr(y]f(x))))?)
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Fisher information matrix on large datasets

Problems on large datasets

m Avoid the direct access to the explicit form of the matrix
Solution:

n e G = By (o g (5] 7(@) ) (5 log r{yl )]

m For datasets with large number of classes, e.g., ImageNet, compute
the expectation more efficiently
Solution: Monte Carlo sampling from r(y|f(x))
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Fisher information matrix on large datasets

Output log-probabilities for a ResNet model.

The,lpng tail distribution of the prediction p
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9G. Marsaglia, W. W. Tsang, and J. Wang. “Fast generation of discrete random variables”. [n: Journal of
Statistical Software 11.3 (2004), pp. 17-24. =} =)
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Fisher information matrix on large datasets
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Empirical evidence

Visualizing the vulnerability measured by the eigenvalues of FIM

Least L2 norm value of perturbations.
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Empirical evidence

Why is it practical to distinguish the adversarial examples via the
eigenvalues of Fisher information matrix?
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Adversarial detection

Key idea: using an auxiliary classifier to distinguish the adversarial
examples with the eigenvalues of FIM serving as characteristics.
Other practical techniques

m The logarithm of the eigenvalues as the features
m Use Lanczos algorithm to calculate a group of eigenvalues!®

m The positive training set is composed of both normal samples and
noisy samples'!

10D, Calvetti, L. Reichel, and D. C. Sorensen. “An implicit restarted Lanczos method for large symmetric
eigenvalue problems”. In: Electronic Transactions on Numerical Analysis 2 (1994), pp. 1-21.

1Ia, Fawzi, M. Seyed D. Moosavi, and P. Frossard. “Robustness of classifiers: From adversarial to random
noise”. In: Advances in Neural Information Processing Systems. 2016, pp. 1632-1640c
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Evaluations

Table: The AUC scores of detecting adversarial attacks using random forest

classifiers and eigenvalues of FIM as characteristics

MNIST
AUC (%) FGM OTCM Opt BIM OSSA
13 KD 7812 09546 0515 0861 84.24
BU 3237 9155 7130 25.46 7421
KD+BU 8243 0578 9535 08.81 8597
Ours  96.11 98.47 05.67 99.10 93.13

12R. Feinman et al. “Detecting adversarial samples from artifacts”. In: ArXiv preprints arXiv:1703.00410 (2017).

1BY. Liu et al. “Delving into transferable adversarial examples and black-box attacks”.

arXiv:1611.02770 (2016).
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Evaluations

Table: The AUC scores of detecting adversarial attacks using random forest
classifiers and eigenvalues of FIM as characteristics

CIFAR-10
AUC (%) FGM OTCM Opt BIM OSSA
KD 6492 0213 90135 98.70 88.89
BU 7040 9193 0139 97.32 87.44
KD+BU 7640 94.45 03.77 98.90 93.54
Ours  80.18 93.68 99.45 99.43 98.01
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Generalization ability and bad case analysis

Generalizes well on f5 norm attacks but failed to generalize to ¢

AUC (%) Tested on
Trained on FGM OTCM Opt BIM OSSA IJSMA
FGSM 9344 90.19 90.45 91.06 89.97 75.35
OTCM 98.55 98.96 98.26 97.78 9857 70.12
Opt 05.18 9530 96.90 97.15 96.11 68.78
BIM 98.10 96.00 97.09 9857 96.35 57.86
OSSA 91.17 9147 89.77 89.47 89.67 65.40
JSMA 40.99 58.46 50.11 60.23 50.18 49.88
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Thank youl

511745060430stu.ecnu.edu.cn
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