Adversarial Attack and Detection under the Fisher Information Metric

Presenter: Chenxiao Zhao¹ Joint work with Tom Fletcher², Mixue Yu¹, Yaxin Peng³, Guixu Zhang¹, Chaomin Shen¹

¹Dept of Computer Science, East China Normal University, China ²Dept of Computer Science, Univ. of Virginia, USA ³Dept of Mathematics, Shanghai University, China

January 30, 2019

What do we know about adversarial examples?

Some imperceptible noise added on the input can alter the output prediction¹

¹I. Goodfellow, J. Shlens, and C. Szegedy. "Explaining and harnessing adversarial examples". In: ArXiv preprints arXiv:1412.6572 (2014).

(East China Normal University)

Adversarial Attack and Detection

Characterizing the vulnerability of deep learning models

How to measure the vulnerability of a deep learning model?

- Worst case perturbation \Rightarrow adversarial training²
- \blacksquare Density 3 / model uncertainty / topological dimension 4 \Rightarrow adversarial detection

(East China Normal University)

Adversarial Attack and Detection

²A. Sinha, H. Namkoong, and J. Duchi. "Certifying some distributional robustness with principled adversarial training". In: ArXiv preprints arXiv:1710.10571 (2017).

³J. Metzen et al. "On detecting adversarial perturbations". In: ArXiv preprints arXiv:1702.04267 (2017).

⁴X. Ma et al. "Characterizing adversarial subspaces using local intrinsic dimensionality". In: ArXiv preprints arXiv:1801.02613 (2018).

The Fisher information metric approach

For adversarial attacks, the goal is to find a subtle perturbation η for a given input, such that the output prediction varies from the the correct to the wrong output.

$$\max_{\boldsymbol{\eta}} \boldsymbol{\eta}^T \boldsymbol{G^x \eta} \qquad \text{s.t.} \ \|\boldsymbol{\eta}\|_2^2 = \epsilon$$

- The optimal solution for η is the greatest eigenvector of matrix G^x
- But how do we define the metric tensor g^x ?

3

∃ ► < ∃ ►</p>

A 🖓 h

Fisher information

Definition (Fisher information)

Let $p(x|\theta)$ be a probability density function of random variable X conditioned on parameter θ . The Fisher information matrix of θ , denoted as G^{θ} , is defined as the variance of the expectation over the derivative of log-likelihood with respect to θ :

$$\boldsymbol{G}_{ij}^{\boldsymbol{\theta}} = \mathbb{E}_{x|\boldsymbol{\theta}}[(\frac{\partial}{\partial \theta_i} \log p(x|\boldsymbol{\theta}))(\frac{\partial}{\partial \theta_j} \log p(x|\boldsymbol{\theta}))^T]$$

Many theoretical benefits in⁵

For adversarial attacks, the input x is the only changeable variable. With some exchange of variables we obtain

$$\boldsymbol{G}_{ij}^{\boldsymbol{x}} = \mathbb{E}_{y|\boldsymbol{x}}[(\frac{\partial}{\partial x_i} \log p(y|\boldsymbol{x}))(\frac{\partial}{\partial x_j} \log p(y|\boldsymbol{x}))^T]$$

What is $p(y|\boldsymbol{x})$ here?

- **True model distribution** p(y|x) (like Gaussian or sth)
- Empirical distribution $r(y|f(\boldsymbol{x}))$ (the output of the model)

How to compute the matrix G^x ?

• Using the Jacobian J_f of the network $f: \mathcal{X} \to \mathcal{Z}.^6$

$$G^{x} = \boldsymbol{J}_{f}^{T} \mathbb{E}_{y|f(\boldsymbol{x})} [(\frac{\partial}{\partial \boldsymbol{z}} r(y|\boldsymbol{z}))(\frac{\partial}{\partial \boldsymbol{z}} r(y|\boldsymbol{z}))^{T}] \boldsymbol{J}_{f}$$
$$= \boldsymbol{J}_{f}^{T} \boldsymbol{G}^{\boldsymbol{z}} \boldsymbol{J}_{f}$$

 Given η as the adversarial perturbation, a general approach is to compute the Hessian of the KL divergence.⁷

$$\boldsymbol{G}_{ij}^{\boldsymbol{x}} = \mathbb{E}_{y|f(\boldsymbol{x})}[\frac{\partial^2}{\partial \eta_i \partial \eta_j} D_{KL}(p(y|\boldsymbol{x})||p(y|\boldsymbol{x}+\boldsymbol{\eta}))]$$

(East China Normal University)

Adversarial Attack and Detection

⁶Hyeyoung Park, S-I Amari, and Kenji Fukumizu. "Adaptive natural gradient learning algorithms for various stochastic models". In: Neural Networks 13.7 (2000), pp. 755–764.

⁷Takeru Miyato et al. "Virtual adversarial training: a regularization method for supervised and semi-supervised learning". In: *IEEE transactions on pattern analysis and machine intelligence* (2018).

- How can we calculate FIM more efficiently?
- We use empirical distribution to compute the FIM with its original form⁸

$$\begin{aligned} \boldsymbol{G}_{ij}^{\boldsymbol{x}} &= \mathbb{E}_{y|\boldsymbol{z}} [(\frac{\partial}{\partial x_i} \log r(y|f(\boldsymbol{x})))(\frac{\partial}{\partial x_j} \log r(y|f(\boldsymbol{x})))^T] \\ &= \sum_{k=1}^n r_k(y|\boldsymbol{z}) [(\frac{\partial}{\partial x_i} \log r_k(y|f(\boldsymbol{x})))(\frac{\partial}{\partial x_j} \log r_k(y|f(\boldsymbol{x})))^T] \end{aligned}$$

⁸ James Martens. "New insights and perspectives on the natural gradient method". In: *arXiv preprint arXiv:1412.1193* (2014).

Why empirical distribution?

What are the advantages for using the empirical distribution instead of true model distribution?

Easy to compute, provided that one is already calculating the gradient

$$\boldsymbol{G}^{\boldsymbol{x}} = \sum_{i=1}^{n} r_i(y|f(\boldsymbol{x})) [(\frac{\partial}{\partial \boldsymbol{x}} \log r_i(y|f(\boldsymbol{x})))(\frac{\partial}{\partial \boldsymbol{x}} \log r_i(y|f(\boldsymbol{x})))^T]$$

More optimization tricks to accelerate the computing process

$$\boldsymbol{\eta}^T \boldsymbol{G}^{\boldsymbol{x}} \boldsymbol{\eta} = \mathbb{E}_{y|f(\boldsymbol{x})}[(\boldsymbol{\eta}^T (\frac{\partial}{\partial \boldsymbol{x}} \log r(y|f(\boldsymbol{x}))))^2]$$

Fisher information matrix on large datasets

Problems on large datasets

• Avoid the direct access to the explicit form of the matrix **Solution**:

$$\boldsymbol{\eta} \leftarrow \boldsymbol{G}^{\boldsymbol{x}} \boldsymbol{\eta} = \mathbb{E}_{y|f(\boldsymbol{x})}[((\frac{\partial}{\partial \boldsymbol{x}} \log r(y|f(\boldsymbol{x})))^T \boldsymbol{\eta})(\frac{\partial}{\partial \boldsymbol{x}} \log r(y|f(\boldsymbol{x})))]$$

For datasets with large number of classes, e.g., ImageNet, compute the expectation more efficiently
Solution: Monte Carlo sampling from r(y|f(x))

Fisher information matrix on large datasets

Output log-probabilities for a ResNet model.

Empirically, about $\frac{1}{5}$ times of sampling, with alias method⁹.

 $^{{}^{9}}$ G. Marsaglia, W. W. Tsang, and J. Wang. "Fast generation of discrete random variables". In: *Journal of Statistical Software* 11.3 (2004), pp. 17–24.

Fisher information matrix on large datasets

(b) Iterative attack

FGM

OTCM

OSSA

э

LSVRC-2012

FGM

отсм

OSSA

20 0 05 10 15 20

< 回 ト < 三 ト < 三 ト

0.6

Empirical evidence

Visualizing the vulnerability measured by the eigenvalues of FIM

(c) MNIST

(d) CIFAR-10

-

Empirical evidence

Why is it practical to distinguish the adversarial examples via the eigenvalues of Fisher information matrix?

(e) statistical histogram of Fisher infor- (f) increasing of eigenvalues along the mation matrix eigenvalues perturbation direction

- 4 回 ト - 4 回 ト

Adversarial detection

Key idea: using an auxiliary classifier to distinguish the adversarial examples with the eigenvalues of FIM serving as characteristics. **Other practical techniques**

- The logarithm of the eigenvalues as the features
- Use Lanczos algorithm to calculate a group of eigenvalues¹⁰
- The positive training set is composed of both normal samples and noisy samples¹¹

(East China Normal University)

Adversarial Attack and Detection

¹⁰D. Calvetti, L. Reichel, and D. C. Sorensen. "An implicit restarted Lanczos method for large symmetric eigenvalue problems". In: *Electronic Transactions on Numerical Analysis* 2 (1994), pp. 1–21.

Evaluations

Table: The AUC scores of detecting adversarial attacks using random forest classifiers and eigenvalues of FIM as characteristics

	MNIST							
	AUC (%)	FGM	ОТСМ	Opt	BIM	OSSA		
1213	KD	78.12	95.46	95.15	98.61	84.24		
	BU	32.37	91.55	71.30	25.46	74.21		
	KD+BU	82.43	95.78	95.35	98.81	85.97		
	Ours	96.11	98.47	95.67	99.10	93.13		

¹²R. Feinman et al. "Detecting adversarial samples from artifacts". In: ArXiv preprints arXiv:1703.00410 (2017).

¹³Y. Liu et al. "Delving into transferable adversarial examples and black-box attacks". In: ArXiv preprints arXiv:1611.02770 (2016).

Evaluations

Table: The AUC scores of detecting adversarial attacks using random forest classifiers and eigenvalues of FIM as characteristics

	CIFAR-10						
AUC (%)	FGM	ОТСМ	Opt	BIM	OSSA		
KD	64.92	92.13	91.35	98.70	88.89		
BU	70.40	91.93	91.39	97.32	87.44		
KD+BU	76.40	94.45	93.77	98.90	93.54		
Ours	80.18	93.68	99.45	99.43	98.01		

3

(日) (周) (三) (三)

Generalization ability and bad case analysis

Generalizes well on ℓ_2 norm attacks but failed to generalize to ℓ_0

AUC (%)						
Trained on	FGM	ОТСМ	Opt	BIM	OSSA	JSMA
FGSM	93.44	90.19	90.45	91.06	89.97	75.35
ОТСМ	98.55	98.96	98.26	97.78	98.57	70.12
Opt	95.18	95.30	96.90	97.15	96.11	68.78
BIM	98.10	96.00	97.09	98.57	96.35	57.86
OSSA	91.17	91.47	89.77	89.47	89.67	65.40
JSMA	40.99	58.46	50.11	60.23	50.18	49.88

Thank you!

51174506043@stu.ecnu.edu.cn

(East China Normal University)

Adversarial Attack and Detection

January 30, 2019 21 / 21