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What do we know about adversarial examples?

Some imperceptible noise added on the input can alter the
output prediction1

Transfer between different models2

Generally exist in a large and continuous subspace3

1I. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing adversarial examples”. In: ArXiv
preprints arXiv:1412.6572 (2014).

2C. Szegedy et al. “Intriguing properties of neural networks”. In: ArXiv preprints arXiv:1312.6199 (2013).
3F. Tramèr et al. “The space of transferable adversarial examples”. In: arXiv preprint arXiv:1704.03453 (2017).
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Characterizing the vulnerability of deep learning models

How to characterize the vulnerability of a deep learning model?

Worst case perturbation4

Satisfiability modulo theory (SMT) solver5

loss surface / local curvature

In general, the previous approaches regard the neural network as a
function mapping f : Rm → Rn.

4A. Sinha, H. Namkoong, and J. Duchi. “Certifying some distributional robustness with principled adversarial
training”. In: ArXiv preprints arXiv:1710.10571 (2017).

5G. Katz et al. “Reluplex: An efficient SMT solver for verifying deep neural networks”. In: International
Conference on Computer-Aided Verification. 2017, pp. 97–117.
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The Fisher information metric approach

Fisher information metric

data space
probability space

Pullback metric

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Pullback metric

Definition (pullback metric)

Let φ :M→N is a differentiable map, and N is a Riemannian
manifold with metric tensor gN , then the pullback of gN along φ
is a quadratic form on the tangent space of M. Given p ∈M and
v ,w ∈ TpM, the quadratic form gM is given by

gM(v ,w) = gN (dφ(v), dφ(w))

where dφ(v) : TvM→ Tφ(v)N is the pushforward of v by φ.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Objective function

For adversarial attacks, the goal is to find a subtle perturbation η
for a given input, such that the output prediction varies from the
the correct to the wrong output.

max
η
ηT g xη s.t. ‖η‖2

2 = ε

The optimal solution for η is the first eigenvector of matrix g x

But how do we define the metric tensor g x ?

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Fisher information

Definition (Fisher information)

Let p(x |θ) be a probability density function of random variable X
conditioned on parameter θ. The Fisher information matrix of θ,
denoted as gθ, is defined as the variance of the expectation over
the derivative of log-likelihood with respect to θ:

gθij = Ex |θ[(
∂

∂θi
log p(x |θ))(

∂

∂θj
log p(x |θ))T ]

Many theoretical advantages in6

6S. Amari and H. Nagaoka. Methods of Information Geometry. Providence, RI: American Mathematical
Society, 2007.
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Formulation

FIM of the input samples

𝑓 softmax

Data distribution

𝑋 ∼ 𝑞(𝑥)

input

Empirical distribution

𝑌 ∼ 𝑟(𝑦|𝑧)
Model distribution

𝑌 ∼ 𝑝(𝑦|𝑥)

Normalized vector

𝑧
Data vector

𝑥

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Formulation

FIM of the input samples

For adversarial attacks, the input x is the only changeable
variable. With some reparameterization of variables we obtain

g x
ij = Ey |x [(

∂

∂xi
log p(y |x))(

∂

∂xj
log p(y |x))T ]

Let Jf be the Jacobian of f (x) w.r.t. x. Using the definition
of pullback metric, FIM can be calculated by

7

Given η as the adversarial perturbation, a general approach is
to compute the Hessian of the KL divergence

g x
ij = Ey |f (x)[

∂2

∂xi∂xj
KL(p(y |x)||p(y |x + η))]

7Hyeyoung Park, S-I Amari, and Kenji Fukumizu. “Adaptive natural gradient learning algorithms for various
stochastic models”. In: Neural Networks 13.7 (2000), pp. 755–764.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial Attack and Detection under the Fisher Information Metric



Outline Motivation Adversarial attacks Adversarial detection

Formulation

FIM of the input samples

For adversarial attacks, the input x is the only changeable
variable.
Let Jf be the Jacobian of f (x) w.r.t. x. Using the definition
of pullback metric, FIM can be calculated by7

g x = JT
f Ey |f (x)[(

∂
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∂

∂z
r(y |z))T ]Jf

= JT
f g z Jf

Given η as the adversarial perturbation, a general approach is
to compute the Hessian of the KL divergence

g x
ij = Ey |f (x)[

∂2

∂xi∂xj
KL(p(y |x)||p(y |x + η))]

7Hyeyoung Park, S-I Amari, and Kenji Fukumizu. “Adaptive natural gradient learning algorithms for various
stochastic models”. In: Neural Networks 13.7 (2000), pp. 755–764.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial Attack and Detection under the Fisher Information Metric



Outline Motivation Adversarial attacks Adversarial detection

Formulation

FIM of the input samples

For adversarial attacks, the input x is the only changeable
variable.

Let Jf be the Jacobian of f (x) w.r.t. x. Using the definition
of pullback metric, FIM can be calculated by7

g x = JT
f g z Jf

Given η as the adversarial perturbation, a general approach is
to compute the Hessian of the KL divergence8

g x
ij = Ey |f (x)[

∂2

∂xi∂xj
KL(p(y |x)||p(y |x + η))]
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Formulation

FIM of the input samples

How can we calculate FIM more efficiently?

How can we apply FIM to the objective functions which might
not involve a probabilistic model in any obvious way?

An solution that combines both accuracy and efficiency is to
use the empirical Fisher9

g x
ij = Er(y |z)[(

∂

∂xi
log p(y |x))(

∂

∂xj
log p(y |x))T ]

9James Martens. “New insights and perspectives on the natural gradient method”. In: arXiv preprint
arXiv:1412.1193 (2014).
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Formulation

Why empirical Fisher?

What are the advantages for using the empirical distribution
instead of true underlying distribution?

The empirical Fisher is essentially easy to compute, provided
that one is already calculating the gradient

g x =
n∑

i=1

ri (y |z)[(
∂

∂x
log pi (y |x))(

∂

∂x
log pi (y |x))T ]

rank(g x ) ≤ rank(g z ) = m, making optimization strategies for
sparse matrices applicable (Lanczos method)

More optimization tricks to accelerate the computing process

ηT g xη = Er(y |z)[(ηT (
∂

∂x
log p(y |x)))2]

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Formulation

Additional constraint

An additional constraint is necessary to guarantee the effectiveness
of the objective. Let J (y , x) be the cross entropy loss of the
neural network.

max
η
ηT g xη s.t. ‖η‖2

2 = ε,J (y , x) ≤ J (y , x + η)

Why is it necessary?

Let η̃ = −η be the opposite-direction-perturbation.

ηT g xη = η̃T g x η̃

but the two directions are not equivalent

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Formulation

Additional constraint

(a) without additional constraint (b) with the constraint

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Formulation

Additional constraints
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Formulation

Additional constraint

The empirical distribution r(y |z) is written as

r(y |z) =
n∏

i=0

zyi
i

This makes FIM a diagonal matrix

Since the network is piecewise linear, we can assume constant
Jacobian field in a neighborhood, then∫ ε

0

√
η̇i η̇j g x

ij ds ≥
∫ ε

0

√
˙̃ηi

˙̃ηj g x
ij ds

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Optimization strategies

Fisher information matrix on large datasets

The outer product is an inefficient representation

Observe that ηT g xη = Er(y |z)[(ηT ∂
∂x log p(y |x))2]

Similarly, g xη = Er(y |x)[(ηT ∂
∂x log p(y |x))( ∂

∂x log p(y |x))]

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Optimization strategies

Fisher information matrix on large datasets

Algorithm 1: One Step Spectral Attack (Power iteration)

Input: input sample x, corresponding labels y , a deep learning
model with the output p(y |x) and the loss J (y , x).

Output: the perturbation η, the greatest eigenvalue λ∗.
1 Initialize η as an random vector with unit norm;
2 while η not converged do
3 Update η ← Ey |x[(( ∂∂x log p(y |x))Tη)( ∂∂x log p(y |x))];

4 Normalize η ← η
‖η‖2

;

5 end
6 if J (x + η) ≤ J (x) then
7 η ← −η;
8 end

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Optimization strategies

Fisher information matrix on large datasets

For datasets with a large number of categories (e.g. ImageNet),
the expectation can also be time consuming.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Optimization strategies

Fisher information matrix on large datasets

Solution: Monte Carlo sampling from r(y |z).

Empirically, we found 1
5 iterations of sampling is good enough

for the approximation.

In practice, we adopt the alias method to perform the
sampling from r(y |z) with O(1) time complexity10.

10G. Marsaglia, W. W. Tsang, and J. Wang. “Fast generation of discrete random variables”. In: Journal of
Statistical Software 11.3 (2004), pp. 17–24.
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Optimization strategies

Fisher information matrix on large datasets

What if we want a group of orthonormal basis representing
the space of adversarial examples?

Solution: Lanczos algorithm11

Particularly efficient for sparse matrices, yielding a total time
complexity of O(dmn)

11D. Calvetti, L. Reichel, and D. C. Sorensen. “An implicit restarted Lanczos method for large symmetric
eigenvalue problems”. In: Electronic Transactions on Numerical Analysis 2 (1994), pp. 1–21.
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Optimization strategies

Fisher information matrix on large datasets

(c) One-step attack (d) Iterative attack

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Empirical evidence

Visualizing the vulnerability measured by the eigenvalues of FIM

(e) MNIST (f) CIFAR-10

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Empirical evidence

Why is it practical to distinguish the adversarial examples via the
eigenvalues of Fisher information matrix?

(g) statistical histogram of Fisher in-
formation matrix eigenvalues

(h) increasing of eigenvalues along the
perturbation direction

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Why exponential?

Observe that the eigenvalues increases exponentially with the linear
decreasing of the least `2 adversarial perturbation size.
Several pieces of the jigsaw puzzle including:

The quadratic form ηT g xη = ηT JT
f g z Jf η is an approximation

of the Fisher information metric on the tangent space of a
given sample x

There exists an exponential mapping Expx (η) : TxM→M
from the tangent space to the geodesic on M

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Why exponential?

Observe that the eigenvalues increases exponentially with the linear
decreasing of the least `2 adversarial perturbation size.
Several pieces of the jigsaw puzzle including:

Geodesic distance∫ ε

0

√
η̇i η̇j g x

ij ds =
√

8JSD(p(y |x)||p(y |x + η))

Jensen Shannon divergence is a bounded measure for pdfs

When η is optimal, the greatest eigenvalue ‖η‖2e∗ = ηT g xη

...

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Adversarial detection

Key idea: using an auxiliary classifier to distinguish the adversarial
examples with the eigenvalues of FIM serving as characteristics.
Other practical techniques

We use the logarithm of the eigenvalues as the features for
classification

The aforementioned Lanczos algorithm is adopted to calculate
a group of orthonormal basis

The positive set of the training set is composed of both
normal samples and noisy samples12

12A. Fawzi, M. Seyed D. Moosavi, and P. Frossard. “Robustness of classifiers: From adversarial to random
noise”. In: Advances in Neural Information Processing Systems. 2016, pp. 1632–1640.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Evaluations

Table: The AUC scores of detecting adversarial attacks using random
forest classifiers and eigenvalues of FIM as characteristics

MNIST
AUC (%) FGM OTCM Opt BIM OSSA

KD 78.12 95.46 95.15 98.61 84.24
BU 32.37 91.55 71.30 25.46 74.21

KD+BU 82.43 95.78 95.35 98.81 85.97
Ours 96.11 98.47 95.67 99.10 93.13

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial Attack and Detection under the Fisher Information Metric



Outline Motivation Adversarial attacks Adversarial detection

Evaluations

Table: The AUC scores of detecting adversarial attacks using random
forest classifiers and eigenvalues of FIM as characteristics

CIFAR-10
AUC (%) FGM OTCM Opt BIM OSSA

KD 64.92 92.13 91.35 98.70 88.89
BU 70.40 91.93 91.39 97.32 87.44

KD+BU 76.40 94.45 93.77 98.90 93.54
Ours 80.18 93.68 99.45 99.43 98.01

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Generalization ability

Table: The generalization ability for detecting adversarial attacks

AUC (%) Tested on
Trained on FGM OTCM Opt BIM OSSA

FGM 94.31 91.92 90.78 91.87 92.13
OTCM 98.55 98.96 98.26 97.78 98.57

Opt 95.18 95.30 96.90 97.15 96.11
BIM 98.10 96.00 97.09 98.57 96.35
OSSA 91.17 91.47 89.77 89.47 89.67

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Bad case analysis

Unfortunately, the defence mechanism is specifically designed
under an `2 norm framework, making it almost completely failed to
resolve the `0 norm cases

AUC (%) Tested on
Trained on FGM OTCM Opt BIM OSSA JSMA

FGM 94.31 91.92 90.78 91.87 92.13 75.35
OTCM 98.55 98.96 98.26 97.78 98.57 70.12

Opt 95.18 95.30 96.90 97.15 96.11 68.78
BIM 98.10 96.00 97.09 98.57 96.35 57.86

OSSA 91.17 91.47 89.77 89.47 89.67 65.40
JSMA 40.99 58.46 50.11 60.23 50.18 49.88

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen
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Summary

Compared with KD, better at distinguishing iterative attacks
and adversarial perturbations obtained via binary search
Intuitively, for a binary softmax classifier without hidden layer,
i.e. zi = wi x and yi = exp zi∑

i exp zi
, i = 1, 2, the eigenvalue is

e∗ = y1(
∂log y1

∂x
)2 + y2(

∂log y2

∂x
)2

= (w1 − w2)2y1y2,

where y1y2 is actually a quadratic function taking maximum
value in y1 = y2 = 0.5.
Some computational tricks used here can not be extended to
high dimensional space (please notify me if I’m wrong)

Using the methods described in13 to bypass our method would
be extremely inefficient (almost intractable for large datasets)
Our method does not require batch input

13N. Carlini. and D. Wagner. “Adversarial examples are not easily detected: Bypassing ten detection methods”.
In: ArXiv preprint arXiv: 1705.07263 (2017).
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Summary

Compared with KD, better at distinguishing iterative attacks
and adversarial perturbations obtained via binary search

Using the methods described in13 to bypass our method would
be extremely inefficient (almost intractable for large datasets)

`total(η) = ||η||2 + α`(x + η) + β(ηT g x ′
η),

where x ′ = x + η.

Our method does not require batch input

13N. Carlini. and D. Wagner. “Adversarial examples are not easily detected: Bypassing ten detection methods”.
In: ArXiv preprint arXiv: 1705.07263 (2017).
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Summary

Compared with KD, better at distinguishing iterative attacks
and adversarial perturbations obtained via binary search

Using the methods described in13 to bypass our method would
be extremely inefficient (almost intractable for large datasets)

Our method does not require batch input

13N. Carlini. and D. Wagner. “Adversarial examples are not easily detected: Bypassing ten detection methods”.
In: ArXiv preprint arXiv: 1705.07263 (2017).
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Thanks!
51174506043@stu.ecnu.edu.cn
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