(人間) とうり くうり

Adversarial Attack and Detection under the Fisher Information Metric

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

December 22, 2018

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Motivation	Adversarial attacks 00000000 000000	Adversarial detection
Outline			

1 Motivation

2 Adversarial attacks

- Formulation
- Optimization strategies

3 Adversarial detection

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Motivation	Adversarial attacks 00000000 000000	
Outline			

1 Motivation

2 Adversarial attacks

- Formulation
- Optimization strategies

3 Adversarial detection

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

What do we know about adversarial examples?

Some imperceptible noise added on the input can alter the output prediction¹

< 同 > < 三 > < 三 >

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

What do we know about adversarial examples?

- Some imperceptible noise added on the input can alter the output prediction¹
- Transfer between different models²

 $^{^{3}}$ F. Tramèr et al. "The space of transferable adversarial examples". In: arXiv preprint arXiv 1704.03453 (2017). \circ \circ \circ

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

¹I. Goodfellow, J. Shlens, and C. Szegedy. "Explaining and harnessing adversarial examples". In: ArXiv preprints arXiv:1412.6572 (2014).

²C. Szegedy et al. "Intriguing properties of neural networks". In: ArXiv preprints arXiv:1312.6199 (2013).

What do we know about adversarial examples?

- Some imperceptible noise added on the input can alter the output prediction¹
- Transfer between different models²
- Generally exist in a large and continuous subspace³

²C. Szegedy et al. "Intriguing properties of neural networks". In: ArXiv preprints arXiv:1312.6199 (2013).

³F. Tramèr et al. "The space of transferable adversarial examples". In: arXiv preprint arXiv过704.03#53 (20軍). つへへ

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

¹I. Goodfellow, J. Shlens, and C. Szegedy. "Explaining and harnessing adversarial examples". In: ArXiv preprints arXiv:1412.6572 (2014).

Characterizing the vulnerability of deep learning models

How to characterize the vulnerability of a deep learning model?

- Worst case perturbation⁴
- Satisfiability modulo theory (SMT) solver⁵
- loss surface / local curvature

⁴A. Sinha, H. Namkoong, and J. Duchi. "Certifying some distributional robustness with principled adversarial training". In: ArXiv preprints arXiv:1710.10571 (2017).

 5 G. Katz et al. "Reluplex: An efficient SMT solver for verifying deep neural networks". In: International Conference on Computer-Aided Verification. 2017, pp. 97–117.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Characterizing the vulnerability of deep learning models

How to characterize the vulnerability of a deep learning model?

- Worst case perturbation⁴
- Satisfiability modulo theory (SMT) solver⁵
- loss surface / local curvature

In general, the previous approaches regard the neural network as a function mapping $f : \mathbb{R}^m \to \mathbb{R}^n$.

 $^{{}^{5}}$ G. Katz et al. "Reluplex: An efficient SMT solver for verifying deep neural networks". In: International Conference on Computer-Aided Verification. 2017, pp. 97–117.

⁴A. Sinha, H. Namkoong, and J. Duchi. "Certifying some distributional robustness with principled adversarial training". In: ArXiv preprints arXiv:1710.10571 (2017).

Adversarial attack

The Fisher information metric approach

0

イロト イポト イヨト イヨト

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attack

- 4 回 ト 4 ヨ ト 4 ヨ ト

Pullback metric

Definition (pullback metric)

Let $\phi : \mathcal{M} \to \mathcal{N}$ is a differentiable map, and \mathcal{N} is a Riemannian manifold with metric tensor $g^{\mathcal{N}}$, then the pullback of $g^{\mathcal{N}}$ along ϕ is a quadratic form on the tangent space of \mathcal{M} . Given $p \in \mathcal{M}$ and $v, w \in T_p \mathcal{M}$, the quadratic form $g^{\mathcal{M}}$ is given by

$$g^{\mathcal{M}}(v,w) = g^{\mathcal{N}}(d\phi(v),d\phi(w))$$

where $d\phi(v) : T_v \mathcal{M} \to T_{\phi(v)} \mathcal{N}$ is the pushforward of v by ϕ .

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Motivation	Adversarial attacks 0000000 000000	

Objective function

For adversarial attacks, the goal is to find a subtle perturbation η for a given input, such that the output prediction varies from the the correct to the wrong output.

$$\max_{\eta} \eta^{T} g^{x} \eta \qquad \text{s.t. } \|\eta\|_{2}^{2} = \epsilon$$

• The optimal solution for η is the first eigenvector of matrix g^{x}

A (1) > A (2) > A (2) >

But how do we define the metric tensor g^x?

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attack

Fisher information

Definition (Fisher information)

Let $p(x|\theta)$ be a probability density function of random variable X conditioned on parameter θ . The Fisher information matrix of θ , denoted as g^{θ} , is defined as the variance of the expectation over the derivative of log-likelihood with respect to θ :

$$g_{ij}^{\theta} = \mathbb{E}_{x|\theta} [(\frac{\partial}{\partial \theta_i} \log p(x|\theta)) (\frac{\partial}{\partial \theta_j} \log p(x|\theta))^T]$$

Many theoretical advantages in⁶

()	111		

Adversarial attacks

00000000

Outline

2 Adversarial attacks

- Formulation
- Optimization strategies

3 Adversarial detection

- 4 回 > - 4 回 > - 4 回 >

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks

Formulation

FIM of the input samples

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000 000000	
Formulation		

FIM of the input samples

For adversarial attacks, the input x is the only changeable variable. With some reparameterization of variables we obtain

$$g_{ij}^{x} = \mathbb{E}_{y|x}[(\frac{\partial}{\partial x_{i}}\log p(y|x))(\frac{\partial}{\partial x_{j}}\log p(y|x))^{T}]$$

⁷Hyeyoung Park, S-I Amari, and Kenji Fukumizu. "Adaptive natural gradient learning algorithms for various stochastic models". In: Neural Networks 13.7 (2000), pp. 755–764.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000 000000	
Formulation		

FIM of the input samples

- For adversarial attacks, the input *x* is the only changeable variable.
- Let J_f be the Jacobian of f(x) w.r.t. x. Using the definition of pullback metric, FIM can be calculated by⁷

$$g^{x} = J_{f}^{T} \mathbb{E}_{y|f(x)} [(\frac{\partial}{\partial z} r(y|z))(\frac{\partial}{\partial z} r(y|z))^{T}] J_{f}$$
$$= J_{f}^{T} g^{z} J_{f}$$

Image: A transformed and A

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000 000000	
Formulation		

FIM of the input samples

- For adversarial attacks, the input x is the only changeable variable.
- Let J_f be the Jacobian of f(x) w.r.t. x. Using the definition of pullback metric, FIM can be calculated by⁷

$$g^{x} = J_{f}^{T}g^{z}J_{f}$$

Given η as the adversarial perturbation, a general approach is to compute the Hessian of the KL divergence⁸

$$g_{ij}^{x} = \mathbb{E}_{y|f(x)}[\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}KL(p(y|x)||p(y|x+\eta))]$$

⁷Hyeyoung Park, S-I Amari, and Kenji Fukumizu. "Adaptive natural gradient learning algorithms for various stochastic models". In: *Neural Networks* 13.7 (2000), pp. 755–764.

⁸Takeru Miyato et al. "Virtual adversarial training: a regularization method for supervised and semi-supervised learning". In: *IEEE transactions on pattern analysis and machine intelligence*(2018).« 🗇 » (🖹 » (🧵 ») 筆

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks

Formulation

FIM of the input samples

- How can we calculate FIM more efficiently?
- How can we apply FIM to the objective functions which might not involve a probabilistic model in any obvious way?
- An solution that combines both accuracy and efficiency is to use the empirical Fisher⁹

$$g_{ij}^{x} = \mathbb{E}_{r(y|z)}[(\frac{\partial}{\partial x_{i}} \log p(y|x))(\frac{\partial}{\partial x_{j}} \log p(y|x))^{T}]$$

⁹ James Martens. "New insights and perspectives on the natural gradient method". In: *arXiv preprint arXiv:1412.1193* (2014).

Why empirical Fisher?

What are the advantages for using the empirical distribution instead of true underlying distribution?

The empirical Fisher is essentially easy to compute, provided that one is already calculating the gradient

$$g^{x} = \sum_{i=1}^{n} r_{i}(y|z) [(\frac{\partial}{\partial x} \log p_{i}(y|x))(\frac{\partial}{\partial x} \log p_{i}(y|x))^{T}]$$

٢

<回▶ < □▶ < □▶

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Why empirical Fisher?

What are the advantages for using the empirical distribution instead of true underlying distribution?

- The empirical Fisher is essentially easy to compute, provided that one is already calculating the gradient
- rank(g^x) ≤ rank(g^z) = m, making optimization strategies for sparse matrices applicable (Lanczos method)

- 4 同 2 4 日 2 4 日 2

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Why empirical Fisher?

What are the advantages for using the empirical distribution instead of true underlying distribution?

- The empirical Fisher is essentially easy to compute, provided that one is already calculating the gradient
- rank(g^x) ≤ rank(g^z) = m, making optimization strategies for sparse matrices applicable (Lanczos method)
- More optimization tricks to accelerate the computing process

$$\eta^{\mathsf{T}} g^{\mathsf{x}} \eta = \mathbb{E}_{\mathsf{r}(y|z)} [(\eta^{\mathsf{T}} (\frac{\partial}{\partial x} \log p(y|x)))^2]$$

(本部) (本語) (本語)

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 00000000 000000	
Formulation		

An additional constraint is necessary to guarantee the effectiveness of the objective. Let $\mathcal{J}(y, x)$ be the cross entropy loss of the neural network.

$$\max_{\eta} \eta^{\mathsf{T}} g^{\mathsf{x}} \eta \qquad \text{s.t. } \|\eta\|_2^2 = \epsilon, \mathcal{J}(\mathsf{y},\mathsf{x}) \leq \mathcal{J}(\mathsf{y},\mathsf{x}+\eta)$$

Why is it necessary?

• Let $\tilde{\eta} = -\eta$ be the opposite-direction-perturbation.

$$\eta^{\mathsf{T}} \mathbf{g}^{\mathsf{X}} \eta = \tilde{\eta}^{\mathsf{T}} \mathbf{g}^{\mathsf{X}} \tilde{\eta}$$

(通) (モン・(用)

but the two directions are not equivalent

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks

э

イロン イロン イヨン イヨン

Formulation

Additional constraint

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks

Formulation

Additional constraints

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000● 000000	
Formulation		

• The empirical distribution r(y|z) is written as

$$r(y|z) = \prod_{i=0}^{n} z_i^{y_i}$$

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000● 000000	
Formulation		

• The empirical distribution r(y|z) is written as

$$r(y|z) = \prod_{i=0}^{n} z_i^{y_i}$$

This makes FIM a diagonal matrix

$$g_{ij}^{z} = \begin{cases} \frac{1}{z_{i}} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

٢

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000● 000000	
Formulation		

• The empirical distribution r(y|z) is written as

$$r(y|z) = \prod_{i=0}^{n} z_i^{y_i}$$

- This makes FIM a diagonal matrix
- Since the network is piecewise linear, we can assume constant Jacobian field in a neighborhood, then

$$\int_{0}^{\epsilon} \sqrt{\dot{\eta_i}\dot{\eta_j}g^{ imes}_{ij}} ds \geq \int_{0}^{\epsilon} \sqrt{\dot{ ilde{\eta_i}}\dot{ ilde{\eta_j}}g^{ imes}_{ij}} ds$$

伺い イヨト イヨト

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks ○○○○○○○ ●○○○○○

Optimization strategies

Fisher information matrix on large datasets

The outer product is an inefficient representation

- Observe that $\eta^T g^x \eta = \mathbb{E}_{r(y|z)}[(\eta^T \frac{\partial}{\partial x} \log p(y|x))^2]$
- Similarly, $g^{x}\eta = \mathbb{E}_{r(y|x)}[(\eta^{T}\frac{\partial}{\partial x}\log p(y|x))(\frac{\partial}{\partial x}\log p(y|x))]$

・ 同 ト ・ ヨ ト ・ ヨ ト

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks ○○○○○○○ ○●○○○○

Optimization strategies

Fisher information matrix on large datasets

Algorithm 1: One Step Spectral Attack (Power iteration)

Input: input sample **x**, corresponding labels y, a deep learning model with the output $p(y|\mathbf{x})$ and the loss $\mathcal{J}(y, \mathbf{x})$.

Output: the perturbation η , the greatest eigenvalue λ^* .

- 1 Initialize η as an random vector with unit norm;
- 2 while η not converged do

3 Update
$$\eta \leftarrow \mathbb{E}_{y|\mathbf{x}}[((\frac{\partial}{\partial \mathbf{x}}\log p(y|\mathbf{x}))^T \eta)(\frac{\partial}{\partial \mathbf{x}}\log p(y|\mathbf{x}))];$$

4 Normalize
$$\eta \leftarrow \frac{\eta}{\|\eta\|_2}$$
;

6 if
$$\mathcal{J}(\mathsf{x}+\eta) \leq \mathcal{J}(\mathsf{x})$$
 then
7 $\mid \eta \leftarrow -\eta;$

イロト イポト イヨト イヨト

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Fisher information matrix on large datasets

For datasets with a large number of categories (e.g. ImageNet), the expectation can also be time consuming.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks

Optimization strategies

Fisher information matrix on large datasets

- **Solution**: Monte Carlo sampling from r(y|z).
- Empirically, we found $\frac{1}{5}$ iterations of sampling is good enough for the approximation.
- In practice, we adopt the alias method to perform the sampling from r(y|z) with O(1) time complexity¹⁰.

¹⁰G. Marsaglia, W. W. Tsang, and J. Wang. "Fast generation of discrete random variables". In: *Journal of Statistical Software* 11.3 (2004), pp. 17–24.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks

Optimization strategies

Fisher information matrix on large datasets

- What if we want a group of orthonormal basis representing the space of adversarial examples?
- Solution: Lanczos algorithm¹¹
- Particularly efficient for sparse matrices, yielding a total time complexity of O(dmn)

¹¹D. Calvetti, L. Reichel, and D. C. Sorensen. "An implicit restarted Lanczos method for large symmetric eigenvalue problems". In: *Electronic Transactions on Numerical Analysis* 2 (1994); pp. ⊕-21. < ≧ ▷ < ≧ ▷

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial attacks ○○○○○○○ ○○○○○●

3

Optimization strategies

Fisher information matrix on large datasets

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 00000000 000000	Adversarial detection
Outline		

1 Motivation

2 Adversarial attacks

- Formulation
- Optimization strategies

3 Adversarial detection

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 0000000 000000	Adversarial detection

Empirical evidence

Visualizing the vulnerability measured by the eigenvalues of FIM

□→ < □→</p>

Outline	Adversarial attacks 0000000 000000	Adversarial detection

Empirical evidence

Why is it practical to distinguish the adversarial examples via the eigenvalues of Fisher information matrix?

(g) statistical histogram of Fisher in- (h) increasing of eigenvalues along the formation matrix eigenvalues perturbation direction

< 同 > < 三 > < 三 >

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2

Why exponential?

Observe that the eigenvalues increases exponentially with the linear decreasing of the least ℓ_2 adversarial perturbation size. Several pieces of the jigsaw puzzle including:

- The quadratic form η^Tg^xη = η^TJ_f^Tg^zJ_fη is an approximation of the Fisher information metric on the tangent space of a given sample x
- There exists an exponential mapping Exp_x(η) : T_x M → M from the tangent space to the geodesic on M

Outline	Adversarial attacks 00000000 000000	Adversarial detection

Why exponential?

Observe that the eigenvalues increases exponentially with the linear decreasing of the least ℓ_2 adversarial perturbation size. Several pieces of the jigsaw puzzle including:

Geodesic distance

$$\int_{0}^{\epsilon} \sqrt{\dot{\eta}_{i}\dot{\eta}_{j}g_{ij}^{x}} ds = \sqrt{8\mathsf{JSD}(p(y|x)||p(y|x+\eta))}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Jensen Shannon divergence is a bounded measure for pdfs
When η is optimal, the greatest eigenvalue ||η||²e* = η^Tg[×]η
...

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Adversarial detection

Key idea: using an auxiliary classifier to distinguish the adversarial examples with the eigenvalues of FIM serving as characteristics. Other practical techniques

- We use the logarithm of the eigenvalues as the features for classification
- The aforementioned Lanczos algorithm is adopted to calculate a group of orthonormal basis
- The positive set of the training set is composed of both normal samples and noisy samples¹²

 12 A. Fawzi, M. Seyed D. Moosavi, and P. Frossard. "Robustness of classifiers: From adversarial to random noise". In: Advances in Neural Information Processing Systems. 2016, pp. 1632=1640. \bigcirc \triangleright + \triangleright +

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 00000000 000000	Adversarial de

ection

< 同 > < 三 > < 三 >

Evaluations

Table: The AUC scores of detecting adversarial attacks using random forest classifiers and eigenvalues of FIM as characteristics

	MNIST				
AUC (%)	FGM	ОТСМ	Opt	BIM	OSSA
KD	78.12	95.46	95.15	98.61	84.24
BU	32.37	91.55	71.30	25.46	74.21
KD+BU	82.43	95.78	95.35	98.81	85.97
Ours	96.11	98.47	95.67	99.10	93.13

\cap	a sé l	
U	uu	

(4 同) (4 日) (4 日)

Evaluations

Table: The AUC scores of detecting adversarial attacks using random forest classifiers and eigenvalues of FIM as characteristics

	CIFAR-10					
AUC (%)	FGM	ΟΤϹΜ	Opt	BIM	OSSA	
KD	64.92	92.13	91.35	98.70	88.89	
BU	70.40	91.93	91.39	97.32	87.44	
KD+BU	76.40	94.45	93.77	98.90	93.54	
Ours	80.18	93.68	99.45	99.43	98.01	

Adversarial attack

Generalization ability

Table: The generalization ability for detecting adversarial attacks

AUC (%)	Tested on				
Trained on	FGM	ОТСМ	Opt	BIM	OSSA
FGM	94.31	91.92	90.78	91.87	92.13
ОТСМ	98.55	98.96	98.26	97.78	98.57
Opt	95.18	95.30	96.90	97.15	96.11
BIM	98.10	96.00	97.09	98.57	96.35
OSSA	91.17	91.47	89.77	89.47	89.67

Adversarial Attack and Detection under the Fisher Information Metric

イロト イポト イヨト イヨト

Outline	Adversarial attacks 0000000 000000	Adversarial detection

Bad case analysis

Unfortunately, the defence mechanism is specifically designed under an ℓ_2 norm framework, making it almost completely failed to resolve the ℓ_0 norm cases

AUC (%)	Tested on					
Trained on	FGM	ОТСМ	Opt	BIM	OSSA	JSMA
FGM	94.31	91.92	90.78	91.87	92.13	75.35
ОТСМ	98.55	98.96	98.26	97.78	98.57	70.12
Opt	95.18	95.30	96.90	97.15	96.11	68.78
BIM	98.10	96.00	97.09	98.57	96.35	57.86
OSSA	91.17	91.47	89.77	89.47	89.67	65.40
JSMA	40.99	58.46	50.11	60.23	50.18	49.88

・ 同 ト ・ ヨ ト ・ ヨ ト

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Outline	Adversarial attacks 00000000 000000	Adversarial detection

Summary

■ Compared with KD, better at distinguishing iterative attacks and adversarial perturbations obtained via binary search Intuitively, for a binary softmax classifier without hidden layer, i.e. z_i = w_ix and y_i = exp z_i/∑_i exp z_i, i = 1, 2, the eigenvalue is

$$e^* = y_1 \left(\frac{\partial \log y_1}{\partial x}\right)^2 + y_2 \left(\frac{\partial \log y_2}{\partial x}\right)^2$$
$$= (w_1 - w_2)^2 y_1 y_2,$$

where y_1y_2 is actually a quadratic function taking maximum value in $y_1 = y_2 = 0.5$.

Some computational tricks used here can not be extended to high dimensional space (please notify me if I'm wrong)

(4月) (1日) (日)

Outline	Adversarial attacks 00000000 000000	Adversarial detection

Summary

- Compared with KD, better at distinguishing iterative attacks and adversarial perturbations obtained via binary search
- Using the methods described in¹³ to bypass our method would be extremely inefficient (almost intractable for large datasets)

$$\ell_{\text{total}}(\eta) = ||\eta||^2 + \alpha \ell(x+\eta) + \beta(\eta^T g^{x'} \eta),$$

where $x' = x + \eta$.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Summary

- Compared with KD, better at distinguishing iterative attacks and adversarial perturbations obtained via binary search
- Using the methods described in¹³ to bypass our method would be extremely inefficient (almost intractable for large datasets)
- Our method does not require batch input

¹³N. Carlini. and D. Wagner. "Adversarial examples are not easily detected: Bypassing ten detection methods". In: ArXiv preprint arXiv: 1705.07263 (2017).

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen

Thanks!

51174506043@stu.ecnu.edu.cn

・ 同 ト ・ ヨ ト ・ ヨ ト

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, Chaomin Shen