
e Adversarial Attack and Detection under the Fisher
Information Metric

Introduction / Motivation

I Neural networks are vulnerable to the adversarial
aacks, making a severe challenge for safety-critical
deep learning applications.

I Characterizing the robustness / vulnerability of deep
learning models to a given sample is a typical question.

I We propose to measure the vulnerability of neural
networks using the pullback from the output space to
the data space.

I This motivate us to perform both the adversarial aack
and detection under the same framework.

Fisher Information Matrix

Previous ways to define the metric tensor Gx:
I Correlated by Jacobian Jf : G

x = JTfG
zJf

I Expectation over Hessian: Gx
ij = −Ey|x[

∂2

∂xi∂xj log p(y|x)]
I Hessian of KL w.r.t. the adversarial perturbation η:

Gx
ij =

∂2

∂ηi∂ηj
DKL(p(y|x)||p(y|x + η))
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Our approach is to use the empirical distribution
r(y|x), this provides engineering benefits:
I Gx

ij = Er(y|x)[(
∂
∂xi

log r(y|x))( ∂
∂xi

log r(y|x))T]
I Eigenvalue ηTGxη = Er(y|x)[(η

T( ∂∂x log p(y|x)))
2]

I Gxη = Er(y|x)[(η
T( ∂∂x log p(y|x)))(

∂
∂x log p(y|x))]

Making it easier to calculate the
eigen-decomposition without access to explicit Gx.

Formulation and Optimization Strategies

Objective function

max
η

ηTGxη s.t. ∥η∥2 = ϵ, J (y, x) ≤ J (y, x + η)

I An eigenvector gives two direction, but they are not
equivalent.

Optimal solution: the greatest eigenvector
I Only the greatest eigenvalues: Power iteration
I A group of eigenvectors and : Lanczos algorithm
I On large datasets: Monte-Carlo sampling from r(y|x)

Empirical Evaluations

(a)One-step aack (b) Iterative aack

(c)MNIST (d)CIFAR-10

Figure: (a,b) Comparison of fooling rates with gradient based aacks.
(c,d) The relationship between least ℓ2 perturbation size (obtained via
binary search of OSSA) and log-eigenvalues

Adversarial Detection

Key idea: Use an auxiliary classifier to distinguish the
adversarial examples with the eigenvalues serving as
characteristics.
I Adding Gaussian noise on the input does not change the

eigenvalues of the FIM, while the the adversarial
examples are more likely to have larger eigenvalues.

Figure: (le) The distribution of the eigenvalues of normal samples and
adversarial examples. (right) The increasing of random samples’
eigenvalues along the direction of adversarial perturbations.

Table: The AUC scores of detecting adversarial aacks using random
forest with the eigenvalues as eigenvalues. The comparison is made
between our proposed method, kernel density estimation (KD) and
Bayesian uncertainty (BU).

MNIST / CIFAR-10
AUC (%) FGM OTCM Opt BIM OSSA

KD
78.12 95.46 95.15 98.61 84.24
64.92 92.13 91.35 98.70 88.89

BU
32.37 91.55 71.30 25.46 74.21
70.40 91.93 91.39 97.32 87.44

KD+BU
82.43 95.78 95.35 98.81 85.97
76.40 94.45 93.77 98.90 93.54

Ours
96.11 98.47 95.67 99.10 93.13
80.18 93.68 99.45 99.43 98.01
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